Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Parasitol Reg Stud Reports ; 43: 100897, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451755

RESUMO

Toxoplasmosis is a worldwide zoonotic disease caused by infection with the intracellular protozoan parasite Toxoplasma gondii, posing significant economic losses to the livestock industry. As a major livestock province, little is known of the prevalence of T. gondii infection in sheep and cattle in Shanxi Province, North China. In this study, a total of 1962 blood samples from cattle (n = 978) and sheep (n = 984), collected from 11 administrative cities in Shanxi Province, were examined for antibodies against T. gondii by using the indirect enzyme linked immunosorbent assay (ELISA) kits commercially available. The results showed that antibodies to T. gondii were detected in 306 of the 978 cattle serum samples (31.29%, 95% CI 28.38-34.19), ranging from 12.64% to 60.00% among the different cities. The overall seroprevalence of T. gondii in sheep was 17.78% (175/984, 95% CI 15.40-20.17), ranging from 2.22% to 41.11% among the different administrative cities. The T. gondii seroprevalence was associated with the management mode and geographical location. This is the first report of T. gondii seroprevalence in cattle and sheep in Shanxi Province, North China, which provides baseline data to plan future control strategies for T. gondii infection in this province.


Assuntos
Doenças dos Bovinos , Toxoplasma , Toxoplasmose Animal , Animais , Bovinos , Ovinos , Toxoplasmose Animal/parasitologia , Estudos Soroepidemiológicos , Fatores de Risco , China/epidemiologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-30626070

RESUMO

Municipal solid waste incineration fly ash (MSWI FA) and granulated lead smelting slag (GLSS) are toxic industrial wastes. In the present study, granulated lead smelting slag (GLSS) was pretreated as a geopolymer precursor through the high-energy ball milling activation process, which could be used as a geopolymeric solidification/stabilization (S/S) reagent for MSWI FA. The S/S process has been estimated through the physical properties and heavy metals leachability of the S/S matrices. The results show that the compressive strength of the geopolymer matrix reaches 15.32 MPa after curing for 28 days under the best parameters, and the physical properties meet the requirement of MU10 grade fly ash brick. In addition, the toxicity characteristic leaching procedure (TCLP) test results show that arsenic and heavy metals are immobilized effectively in the geopolymer matrix, and their concentrations in the leachate are far below the US EPA TCLP limits. The hydration products of the geopolymer binder are characterized by X-ray diffraction and Fourier transform infrared methods. The results show that the geopolymer gel and Friedel's salt are the main hydration products. The S/S mechanism of the arsenic and heavy metals in the geopolymer matrix mainly involves physical encapsulation of the geopolymer gel, geopolymer adsorption and ion exchange of Friedel's salt.


Assuntos
Cinza de Carvão/química , Chumbo/química , Polímeros/química , Eliminação de Resíduos/métodos , Poluentes Químicos da Água/química , Arsênio/química , Incineração , Resíduos Industriais , Metais Pesados/química
3.
J Colloid Interface Sci ; 537: 11-19, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414504

RESUMO

Exploring low-cost and outstanding bimetallic phosphides to substitute noble metals as electrocatalysts for oxygen evolution reaction (OER) in alkaline media is essential for renewable energy technologies. Herein, bimetallic nickel-iron phosphides nanoparticles (P-NiFe-800 NPs) with rich defects have been synthesized through gas annealing at 800 °C and phosphorization using uniform nickel-iron nanocubes (NiFe NCs) as precursor. At optimized calcination temperature, the obtained P-NiFe-800 NPs are composed of uniform nanoparticles with the rough surface, which suggests the larger surface area and more exposed rich active sites than other samples for OER. The introduction of P element to binary nickel-iron metals can optimize the crystalline and electronic structures of NiFe NCs and thus enhance electrocatalytic properties. Owing to the distinct morphological structure and synergistic effect between nickel-iron and phosphorus, P-NiFe-800 NPs demonstrate superior electrocatalytic activities for OER with lower overpotential of 270.1 mV to achieve a current density of 10 mA cm-2, smaller Tafel slope of 39 mV dec-1, lower electrochemical impedance spectroscopy (EIS) value, bigger determined double-layer capacitance (Cdl) of 2130 uF cm-2 and prominent stability than NiFe NCs, NiFe-600 NPs, NiFe-700 NPs, NiFe-800 NPs, NiFe-900 NPs, P-NiFe NCs, P-NiFe-600 NPs, P-NiFe-700 NPs and P-NiFe-900 NPs. The optimized phosphorization is helpful for fabricating the bimetallic phosphides as efficient catalysts for OER.

4.
Environ Sci Pollut Res Int ; 25(8): 7600-7607, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29282669

RESUMO

Flotation waste of copper slag (FWCS), neutralization sludge (NS), and arsenic-containing gypsum sludge (GS), both of which are difficult to dispose of, are major solid wastes produced by the copper smelting. This study focused on the co-treatment of FWCS, NS, and GS for solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Firstly, the preparation parameters of binder composed of FWCS, NS, and cement clinker were optimized to be FWCS dosage of 40%, NS dosage of 10%, cement clinker dosage of 50%, mill time of 1.5 h, and water-to-binder ratio of 0.25. On these conditions, the unconfined compressive strength (UCS) of the binder reached 43.24 MPa after hydration of 28 days. Then, the binder was used to solidify/stabilize the As-containing GS. When the mass ratio of binder-to-GS was 5:5, the UCS of matrix can reach 11.06 MPa after hydration of 28 days, meeting the required UCS level of MU10 brick in China. Moreover, arsenic and other heavy metals in FWCS, NS, and GS were effectively solidified or stabilized. The heavy metal concentrations in leachate were much lower than those in the limits of China standard leaching test (CSLT). Therefore, the matrices were potential to be used as bricks in some constructions. XRD analysis shows that the main hydration products of the matrix were portlandite and calcium silicate hydrate. These hydration products may play a significant role in the stabilization/solidification of arsenic and heavy metals.


Assuntos
Arsênio/química , Compostos de Cálcio/química , Sulfato de Cálcio/química , Materiais de Construção/análise , Cobre/química , Metais Pesados/análise , Esgotos/análise , Silicatos/química , Arsênio/análise , Sulfato de Cálcio/análise , China , Cobre/análise , Metais Pesados/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...